Enhancing Visual Clustering Using Adaptive Moving Self-Organizing Maps (AMSOM)
نویسندگان
چکیده
Recent advancements in computing technology allowed both scientific and business applications to produce large datasets with increasing complexity and dimensionality. Clustering algorithms are useful in analyzing these large datasets but often fall short to provide completely satisfactory results. Integrating clustering and visualization not only yields better clustering results but also leads to a higher degree of confidence in the findings. Self-Organizing Map (SOM) is a neural network model which is used to obtain a topology-preserving mapping from the (usually high dimensional) input/feature space to an output/map space of fewer dimensions (usually two or three in order to facilitate visualization). Neurons in the output space are connected with each other but this structure remains fixed throughout training and learning is achieved through the updating of neuron reference vectors in feature space. Despite the fact that growing variants of SOM overcome the fixed structure limitation, they increase computational cost and also do not allow the removal of a neuron after its introduction. In this paper, a variant of SOM is presented called AMSOM (Adaptive Moving Self-Organizing Map) that on the one hand creates a more flexible structure where neuron positions are dynamically altered during training and on the other hand tackles the drawback of having a predefined grid by allowing neuron addition and/or removal during training. Experimental evaluation on different literature datasets with diverse characteristics improves SOM training performance, leads to a better visualization of the input dataset, and provides a framework for determining the optimal number and structure of neurons as well as the optimal number of clusters.
منابع مشابه
AMSOM: Adaptive Moving Self-organizing Map for Clustering and Visualization
Self-Organizing Map (SOM) is a neural network model which is used to obtain a topology-preserving mapping from the (usually high dimensional) input/feature space to an output/map space of fewer dimensions (usually two or three in order to facilitate visualization). Neurons in the output space are connected with each other but this structure remains fixed throughout training and learning is achi...
متن کاملEnhancing Clustering Performance of Feature Maps Using Randomness
This paper presents an enhancement made to a high dimensional variant of a growing self organizing map called the High Dimensional Growing Self Organizing Map (HDGSOM) that enhances the clustering of the algorithm. The enhancement is based on randomness that expedites the self organizing process by moving the inputs out from local minima producing better clusters within a shorter training time....
متن کاملSteel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps
Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...
متن کاملClustering Using Adaptive Self-organizing Maps (ASOM) and Applications
This paper presents an innovative, adaptive variant of Kohonen’s selforganizing maps called ASOM, which is an unsupervised clustering method that adaptively decides on the best architecture for the self-organizing map. Like the traditional SOMs, this clustering technique also provides useful information about the relationship between the resulting clusters. Applications of the resulting softwar...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016